innovation for life

THE IBEX FUSED SATELLITE TRACKER DEVELOPMENT AND DEMONSTRATION | G.H. VISSER & D.A. VAN SLIEDREGT

31 August 2022

INDEX THE IBEX FUSED SATELLITE TRACKER

01. INTRODUCTION
02. PROBLEM STATEMENT
03. SOLUTION APPROACH
04. APPLICATION STRUCTURE
05. VALIDATION
06. CONCLUSION

INTRODUCTION

-) Orbit Determination Enables
 - **)** ISAR Imaging
 - Instrument Tracking
 -) SSA
-) Image Based Ephemeris eXtractor) IBEX
 - More than images

PROBLEM STATEMENT

"Determine the orbits of satellites with unknown properties as precisely as possible from observations by heterogenous sensors without a-priori knowledge."

SOLUTION APPROACH

-) Abstracted Sensor Inputs
- > Initial Orbit Determination
- Accurate Orbit Determination
 - Generic Satellite Model
 - > Environment Model

SOLUTION APPROACH ABSTRACTED SENSOR INPUTS

Abstracted sensor inputs allow IBEX to be easily expanded with new sensors. Currently IBEX supports the following abstracted inputs:

-) Cartesian Position
-) Cartesian Velocity
- **)** Azimuth / Elevation
-) Range to observer
-) Range rate
- **)** Right Ascension / Declination

SOLUTION APPROACH IMAGE BASED EXTRACTION

Angular measurements are extracted from time series of 2D pixel data of observations. The following procedure is used:

- 1. Determine the viewfinder angular coordinates
- 2. Determine 2D-pixel offset of satellite relative to viewfinder
- 3. Rotate 2D-pixel offset to account for sideways reflection of light in TNO's Nasmyth telescope
- 4. Convert 2D-pixel offset into angular offset
- 5. Combine angular offset and viewfinder coordinates to determine satellite angular coordinates

31 August 2022

SOLUTION APPROACH INITIAL ORBIT DETERMINATION

To accurately estimate a satellites orbit, an initial orbit must be set. The following options for IOD have been implemented:

-) One position and velocity observation
-) Two position observations
- **)** Two Range-Azimuth-Elevation observations
-) Three angular observations
- > Two-line elements (TLE)

Image obtained from "D. A. Vallado and W. D. Mcclain, Fundamentals of Astrodynamics and Applications, 4th ed. Hawthorne: Microcosm Press, 2013."

SOLUTION APPROACH ACCURATE ORBIT DETERMINATION

IBEX's goal is to estimate generic satellite orbits. The near Earth orbit is estimated using a least squares estimator in conjunction with a Levenberg-Marquardt optimizer. The following effects are currently modelled:

) Gravity field including spherical harmonics

• Atmospheric drag using a generic satellite model

> Relativity

) Lunar Attraction

) Solar Attraction

) Modular Architecture

) Separation of Estimator Core

VALIDATION SETUP

"Estimate an orbit and generate a Consolidated Prediction Format file that can be used by a telescope to track the satellite."

) Estimate an orbit based on GNSS data.

-) Propagate the orbit to the intended time of tracking.
-) Generate a CPF file for tracking the satellite with a telescope.
-) Track the satellite based on the CPF file.
- Determine deviation of satellite from computed track with telescope images gathered during tracking.

Tracking of the Aerocube 14A satellite (COSPAR ID 2019-071D) was planned and executed at the 21st of September 2021 at 03:58Z.

CONCLUSION

- The IBEX fused satellite tracker is shown to be accurate on real-world GNSS data
-) IBEX is in use for multiple projects, e.g.,
 - > ISAR image generation
 - Sensor fusion experiments
 - Tracking of laser-based telecommunication satellites
- Setimating orbits using azimuth and elevation is shown to be viable
- > Future experiments are planned

> THANK YOU FOR YOUR TIME

geert_henk.visser@tno.nl

duncan.vansliedregt@tno.nl

